0.0423 for 2569 reflections, $w R=0.0351 \quad$ ($R_{\text {all }}=$ $0.0492, w R_{\text {all }}=0.0357$) and a goodness of fit $=1.892$. The maximum $|\Delta / \sigma|<0 \cdot 1$ in the final refinement cycle and the minimum and maximum peaks in the final ΔF map were -0.20 and $0.30 \mathrm{e} \AA^{-3}$, respectively. Differentiation between enantiomorphs was not possible on the basis of the X-ray diffraction results ($w R$ for enantiomorph was 0.0351). The scattering factors for the non-H atoms were obtained from Cromer \& Mann (1968), with anomalousdispersion corrections from the work of Cromer \& Liberman (1970), while scattering factors for the H atoms were taken from Stewart, Davidson \& Simpson (1965). The linear absorption coefficient was calculated using values in International Tables for X-ray Crystallography (1974). Atomic positional and thermal parameters for the non-H atoms are listed in Table 1, while the bond lengths and angles for the non-H atoms are listed in Table 2.* The atomic labelling scheme is shown in Fig. 1. Fig. 1 was generated using the Nicolet XRD SHELXTL-PLUS software package (Sheldrick, 1987). The least-squares-planes program was supplied by Cordes (1983); other computer programs from reference 11 of Gadol \& Davis (1982).

[^0]Related literature. The crystal structure of the α-phenylethyl analog of (1) has been previously reported and references cited therein (Lynch, Li \& Martin, 1988).

The authors would like to thank the Robert A. Welch Foundation (F-652) and the National Institutes of Health (G. M. 25439 to SFM) for support for this work.

References

Cordes, A. W. (1983). Personal communication.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gadol, S. M. \& Davis, R. E. (1982). Organometalics, 1, 1607-1613.
Henslee, W. H. \& Davis, R. E. (1975). Acta Cryst. B32, 15111519.

International Tables for X-ray Crystallography (1974). Vol. IV, p. 55. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Lynch, V. M., Li, W. \& Martin, S. F. (1988). Acta Cryst. C44, 187-189.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Martin, S. F. \& Li, W. (1989). J. Org. Chem. 54, 265-268.
Riley, P. E. \& Davis, R. E. (1976). Acta Cryst. B32, 381-386.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1987). SHELXTL-PLUS. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structure of 1,2-Bis(2-methyl-4-quinazolinyl)ethylene

By Wolfgang Hiller and Mehmet Akkurt*
Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Federal Republic of Germany

(Received 29 November 1989; accepted 23 January 1990)

Abstract

C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4}, M_{r}=312 \cdot 38\), monoclinic, $P 2_{1} / n$, $a=9.654$ (1),$\quad b=7.544$ (1),$\quad c=11.018$ (1) $\AA, \quad \beta=$ $99.84(1)^{\circ}, V=790.6 \AA^{3}, Z=2, D_{x}=1.312 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mathrm{Cu} K \alpha, \lambda=1.54184 \AA, \quad \mu=5.964 \mathrm{~cm}^{-1}, \quad F(000)=$ $328, T=293 \mathrm{~K}$. The final R value converged to 0.049 for 907 significant $[I>3 \sigma(I)$] reflections. In the asymmetric unit is a half molecule completed by an

[^1]0108-2701/90/061157-02\$03.00
inversion center in the ethylene bond. The resulting planar molecule is the trans isomer.

Experimental. The product was obtained by oxidation of 2,4-dimethylquinazoline with SeO_{2} (Kepez, 1989). To clarify which of the methyl groups is oxidated we decided to perform a structure determination. A yellow single crystal of approximate dimensions $0.40 \times 0.15 \times 0.25 \mathrm{~mm}$ was mounted on a glass fiber. The systematic absences indicated space

Table 1. Data-collection and structure-refinement parameters
Crystal shape
Diffractometer used
Method of intensity measurement
No. and θ range $\left(^{\circ}\right.$) of reflections for
lattice parameters
Method used for absorption correction
Minimum absorption correction
Maximum absorption correction
Average absorption correction
Maximum value of $(\sin \theta) / \lambda$ reached in intensity measurement (\AA^{-1})
Range of h, k and l
Standard reflections
Interval, standard reflections measured
Total No. of reflections measured; θ range (${ }^{\circ}$)
No. of observed reflections
Methods used to solve structure
Use of F or F^{2} in LS refinement
Method of locating H atoms
Weighting scheme
Parameters refined
Value of R
Value of $w R$
Ratio of max. LS shift to e.s.d. (Δ / σ)
Max. height in final ΔF map (e \AA^{-3})
Error in an observation of unit weight Secondary-extinction coefficient
Source of atomic scattering factors
Computer used
Parallelepiped
Parallelepiped
CAD-4, Enraf-Nonius
CAD-4, Enraf-Nonius
\omega/0 scan
\omega/0 scan
25;12-26
25;12-26
DIFABS (Walker \& Stuart, 1983)
DIFABS (Walker \& Stuart, 1983)
0.717
0.717
1.463
1.463
0.998
0.998
0.587
0.587
0->11,0->8,-12->12
0->11,0->8,-12->12
332,105
332,105
l h, loss of intensity
l h, loss of intensity
1547; 65 (418 unobserved reflections)
1547; 65 (418 unobserved reflections)
907 with I> 3\sigma(I)
907 with I> 3\sigma(I)
Direct methods
Direct methods
F
F
From difference electron density map,
From difference electron density map,
positions included in refinement with
positions included in refinement with
fixed Biso =4 \&
fixed Biso =4 \&
l/\sigma 乍
l/\sigma 乍
134
134
0.049
0.049
0.045
0.045
0.002
0.002
0.162
0.162
0.634
0.634
6.77 (1) }\times1\mp@subsup{0}{}{-6}(\mathrm{ Zachariasen, 1963)
6.77 (1) }\times1\mp@subsup{0}{}{-6}(\mathrm{ Zachariasen, 1963)
International Tables for X-ray
International Tables for X-ray
Crystallography (1974)
Crystallography (1974)
DEC MicroVAX 3500
DEC MicroVAX 3500

Table 2. Atomic positional and equivalent isotropic displacement parameters

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
N1	$0 \cdot 5446$ (2)	0.3391 (3)	0.3389 (2)	0.037 (1)
N3	0.7750 (2)	0.4582 (3)	0.3481 (2)	0.034 (1)
C2	0.6436 (3)	0.4168 (4)	0.2892 (2)	0.035 (2)
C4	0.8091 (3)	0.4173 (4)	0.4659 (2)	0.028 (1)
C5	0.7377 (3)	$0 \cdot 2908$ (4)	0.6577 (3)	0.040 (2)
C6	0.6334 (3)	$0 \cdot 2174$ (5)	0.7107 (3)	0.049 (2)
C7	0.4993 (3)	$0 \cdot 1844$ (5)	$0 \cdot 6417$ (3)	0.048 (2)
C8	0.4715 (3)	$0 \cdot 2245$ (4)	0.5197 (3)	0.041 (2)
C9	0.5760 (3)	$0 \cdot 3016$ (4)	0.4609 (2)	0.031 (1)
C10	0.7103 (3)	0.3359 (4)	$0 \cdot 5309$ (2)	0.029 (1)
C21	0.6104 (3)	0.4649 (5)	0.1555 (3)	0.051 (2)
C41	0.9533 (3)	$0 \cdot 4582$ (4)	0.5278 (2)	0.032 (1)

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s
Symmetry operator: (i) $-x+2,-y+1,-z+1$.

N1-C2	1.317 (4)	C5-C6	1.365 (5)
N1-C9	1.356 (3)	C5-C10	1.418 (4)
N3-C2	1.359 (3)	C6-C7	1.407 (4)
N3-C4	1.319 (3)	C7-C8	1.359 (4)
C2-C21	1.498 (4)	C8-C9	1.415 (4)
C4-C10	1.427 (4)	C9-C10	1.414 (3)
C4-C41	1.475 (3)	C41-C41 ${ }^{\text {i }}$	1.332 (4)
C2-N1-C9	116.7 (2)	C6-- 7 - 88	$120 \cdot 2$ (3)
C2-N3-C4	$118 \cdot 1$ (2)	C7-C8-C9	$120 \cdot 5$ (2)
N1-C2-N3	126.0 (2)	N1-C9-C8	119.0 (2)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 21$	117.9 (2)	$\mathrm{N}-\mathrm{C}-\mathrm{Cl0}$	122.0 (3)
N3-C2-C21	$116 \cdot 1$ (3)	C8-C9-C10	119.0 (2)
N3-C4-C10	$121 \cdot 3$ (2)	$\mathrm{C} 4-\mathrm{Cl} 0-\mathrm{C} 5$	$124 \cdot 7$ (2)
N3-C4-C41	117.6 (2)	C4-C10-C9	115.8 (2)
C10-C4-C41	121.2 (2)	C5-C10-C9	119.6 (3)
C6-C5-C10	119.4 (2)	$\mathrm{C} 4-\mathrm{C} 41-\mathrm{C} 41^{\text {i }}$	$123 \cdot 2$ (2)
C5-C6-C7	$121 \cdot 3$ (3)		

Fig. 1. Plot of the molecule and numbering scheme.
group $P 2_{1} / n$. During the exposure time of $21 \cdot 8 \mathrm{~h}$ the total loss in intensity was 14.9%. A linear decay correction was applied using the slope of the leastsquares line through the standards' plot of intensity vs time. In the final full-matrix least-squares refinement, all non- H atoms were assigned anisotropic atomic displacement parameters. A summary of data-collection and structure-refinement parameters is given in Table 1. Final atomic coordinates are listed in Table 2, distances and angles in Table 3.* All calculations were performed with MOLEN (Enraf-Nonius, 1989). A graphic representation (Keller, 1988) of the molecule is shown in Fig. 1.

Related literature. The synthesis of the compound has recently been published by Kepez (1989).

We thank the Scientific and Technical Research Council of Turkey for a research grant (MA). We are also grateful to Professor Dr J. Strähle, University of Tübingen, Federal Republic of Germany, for providing the laboratory facilities, and Dr M. Kepez, Erciyes University, Kayseri, Turkey, for the crystals.

[^2]
[^0]: * Tables of anisotropic thermal parameters, positional and thermal parameters for the H atoms, bond distances and angles involving the H atoms, torsion angles, least-squares planes, structure-factor amplitudes and a unit-cell packing diagram have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52597 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Permanent address: Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey.

[^2]: * Lists of structure factors, H -atom positions, torsion angles, and anisotropic atomic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52636 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

 ## References

 Enraf-Nonius (1989). MOLEN. Molecular Structure Solution Package, test version. Enraf-Nonius, Delft, The Netherlands.
 International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
 Keller, E. (1988). SCHAKAL. Univ. of Freiburg, Federal Republic of Germany.
 Kepez, M. (1989). Monatsh. Chem. 120, 127-130.
 Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
 Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

